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THE  GENERALIZED  EULER-MASCHERONI  CONSTANTS 

INTRODUCTION 

The generalized Euler-Mascheroni constants  are  defined by 

lim lnnk Inn+' M 
yn = M-ka E"- , n = 0 ,   1 , 2  ,... 

k=  1 
n+ 1 

and  are the coefficients  of the Laurent  expansion of 

They were  first  defined by Stieltjes in  1885, discussed by Stieltjes  and  Hermite [ 1 1, and have been 
periodically  reinvented over the years [ 2,3,4]. 

The  rate of convergence is painfully slow (Table 1) so one is forced to seek some  method  to speed up 

a suggestion made by Edwards [ 5 I in computing the Riemann  Zeta  function, the sum portion  of  yn is split 
into  two sums so that  the first (p -1 ) terms are  directly summed and the p to M sum is approximated  by  the 
Euler-Maclaurin formula as M tends to infinity.  Hence, 

i convergence, and  of  course the most  common way is by employing the Euler-Maclaurin formula.  Following 

'-' lnnk + lim (2k-1) 

k= 1 k=  1 x=M 
y n = C  7 M+w 

where 0 < 0 < 1 and B2k are the Bernoulli numbers. Letting M +. 00, it follows that 
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ci) 
The chief difficulty  in using this  formula is determining  (lnnx/x) in a  usable  form. 

Lemma. 

‘ . (.ex) - In;:; n (y-k In x) 
dxJ X k= 1 

j 
” -- 

where, after expanding the  product,  put yk = n!/(n-k)!. 

Proof:  Let 

and set 

”- dm r x ]  - ld; 

dxm 
Qm 

and assume that,  for some value of  m, 

hm-n- 1 
m .m+2 

Q’ = X [n-m - (rn+l) In XI  Qm 
X 

+ x l n x Q k ]  

and  define 

H , = [ n - m - ( m + l ) I n x ]   Q m +   X l n x Q k  . 

Now 
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n! pln!lnx p2n!ln  2  x 

Qm (n-m)! (n-m+2)!  (n-m+l)! 
- 
“- + +. . . + ( 4 ) m  pm Inm, 

.r 

Since 

n! n! 
(n-m)! (n-m-l)! 

(n-m) - - - = ym+l 

we obtain,  upon  substitution of (5) into (4): 

This is obviously 

Inserting  this  into (3) proves the  theorem  by  induction.  The last term in equation  (2) is 
I 

and  must now be given bounds. By the  Cauchy  integral  formula, 

I lnn(k+p+p/2 eie) I < 21nn(k+2p) 

and 
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1  1 
- > I  I 
p p+k+p/2 eie 

COMPUTATION 

The  fourth  term  of  equation (2) requires the construction  of  three  matrices A, B, C and  two  vectors 
v, x. A is a (2j-3)X(2j-2) matrix whose first  (L + 1)  elements in the  Lth row  are given by the coefficients  of 

fi (y-  k In P) 
k= 1 

and  the remainder  set  equal to zero. B is a  matrix  of the same  dimension whose Lth row is  given by 

n! n! 
(n-L)! ' (n-L-l)! 

("- , 1 

The elements  are,  of  course,  zero if L > n. C is a matrix defined  by 

C = (a..b..)  for i = 1, 3, 5, 7 ..., and j = 1 ,  2, 3, 4... 
1J 1J 

Next  define 

uT = (1, ~n p, In p, ... , 2 h2j-2 - P) 

and 
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With these  equations, (2) may be written as: 

VTCU 
k= 1 

9 

with  an  error  bounded  by (7). An APL computer program was written to evaluate y, (see Appendix). 

D I t  was observed that  the minimum  error  in  computing yn occurred  in  a  neighborhood  of p=j and  a 
sensitivity study  indicated  that p=j=lO was an optimum choice. Table 2 contains the first 32 Euler- 
Mascheroni constants. 

Table 3 shows that  the Laurent  expansion provides a very effective  means of  computing the Riemann 
{ function in a  neighborhood  of z = 1. However, the expansion is not a  useful method  for  extending  the 
list of  zeros  of c(z) known today. 

The behavior of  the Euler-Mascheroni constants themselves have been the subject of investigation. 
Briggs [6] showed that  infinitely  many yn are negative and  infinitely  many  are positive and Mitrovic 
extended  this result by showing that each of these  inequalities yn < 0, y2n-l < 0, yn > 0 ,  y2n-l > 0 holds 
for  infinitely  many  n [ 7 ] . 

Good [ 8 1 recently  conjectured that  the lengths of the runs of the same sign of Ayn never decrease. 

I 

5 

i i iiliiilli li 



TABLE 1. yn VERSUS NUMBER OF TERMS  COMPUTED (M) 

M =  103 M = 104 M = 105 M = lo6 

n = O  0.57771558156810 0.57726566406712 0.57722066488224 0.57721616479093 

n =  1  -0.06936246015836 -0.07235533352434 -0.072758281  12056 4.072808939505  11 

n = 2  0.01416535317172 -0.0054489000775 1 -0.00902762943042 -0.00959495724544 

n = 5  7.86463444728723 3.3  1473675482265 1 .O 12 13466958  143 0.25241822958923 



TABLE 2. GENERALIZED EULER-MASCHERONI CONSTANTS 

n 

0 
1 

0.57721566490153 
-0.07281584548368 

2 
3 

-0.009690363  19287 
0.00205383442030 

4 
5 

0.00232537006546 
0.00079332381728 

6 
7 

-0.0002387693455 
-0.0005272895671 

8 
9 

-0.0003521233539 
-0.0000343947747 

10 
11 

0.000205332814 
0.000270  184439 

12 
13 

0.000 1672729 1 
-0.00002746381 

14 
I5 

-0.00020920927 
-0.00028346867 

16 
17 

-0.000 1996969 
0.0000262769 

18 
19 

0.0003073682 
0.000503605 

20 
21 

0.000466342 
0.000 1044 

22 
23 

-0.0005416 
-0.0012439 

24 
25 

-0.001 5885 
-0.0010746 

26 
27 

0.00065  7 
0.003477 

28 
29 

0.006399 
0.00737 

30 
31 

0.00355 
-0.00752 
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TABLE 3. 

X 

0.5 

0.0 1 

2 

3 

4 

5 

6 

0.5 

0.5 

0.5 

iY 

0 

0 

0 

0 

0 

0 

0 

1 

3 

5 

R e W  

-1.46035450881 

-0.50929071404 

1.64493406685 

1.202056903  16 

1.08232323371 

1.03692775514 

1.01 734306  198 

0.14393642708 

0.53273667097 

0.701812371 17 

ImS(z> 

0.00000000000 

0.00000000000 

0.00000000000 

0.00000000000 

0.00000000000 

0.00000000000 

0.00000000000 

-0.72209974353 

-0.0788965  1343 

0.23  103800839 
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APPENDIX 

V 
c 1 1  c 2 1  
i 3 1  
C 4 l  
C51  
C 6 1  
i 7 1  

V 
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YBBR?iOULLICulV 
V BtBERNOULLI N 

c11 + ( N > 2 2 ) l L  
C 2 1   D - 2 2 ~ 0  
C31 B C l l + l + l  
C41  BC21+ l i 2  
C 5 l   B C 3 ] + 1 + 6  
C 6 1   B C 4 1 + - 1 + 3 0  
C 7 1   B C 5 3 + 1 5 4 2  
C 8 1   B C 6 1 +   1 + 3 0  
C 9 1   B i 7 1 + 5 5 6 6  
C l O l  B [ 8 l +   6 9 1 r 2 7 3 0  
Clll 9 C 9 1 + 7 5 6  
C 1 2 1  BC 1 0 1 + - 3 6 1 7 + 5 1 0  
C 1 3 1   B C l l l + 4 3 8 6 7 5 7 9 8  
C l 4 1   B C 1 2 l +   1 7 4 6 1 1 5 3 3 0  
C 1 5 3   B C 1 3 1 + 8 5 4 5 1 3 : 1 3 8  
C l 6 1   5 C 1 4 1 +   2 3 6 3 6 4 0 9 1 5 2 7 3 0  
C 1 7 1   B C 1 5 1 + 8 5 5 3 1 0 3 5 6  
C l 8 l   B C 1 6 1 + - 2 . 3 7 4 9 4 6 E 1 0 5 8 7 0  
C 1 9 1   B C 1 7 1 + 8 . 6 1 5 8 4 l F 1 2 + 1 4 3 2 2  
C 2 0 l   B C 1 8 1 +   7 . 7 0 9 3 2 1 3 1 2 5 5 1 0  
C 2 1 l   B C 1 9 1 + 2 . 5 7 7 6 8 8 8 1 2 5 6  
C 2 2 l  B C 2 0 1 + - 2 . 6 3 1 5 2 7 E l 9 : 1 9 1 9 1 9 0  
C 2 3 1   B C 2 1 1 + 2 . 9 2 9 9 9 4 3 1 5 5 6  
C 2 4 1   B C 2 2 1 +   1 . 9 2 9 6 5 8 B 1 6  
C 2 5 1  +O;B+!J+B 
C 2 G l  L : ' N  MUST BY LESS THAN OR EQUAL TO 2 2 '  
C 2 7 1  R FIRST 2 2  BERNOULLI IVU.VSERS 

- 

- 

- 

- 

- 

- 

- 
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